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An accurate numerical analysis for the onset of thermal convection in a two-
layer system is presented. The system comprises a saturated porous layer over
which lies a layer of the same fluid. The layered system is heated from below,
the upper (fluid) surface is free to the atmosphere, and convection driven by sur-
face tension is allowed for. The eigenvalues and eigenfunctions for the instabil-
ity problem are derived by utilizing aD2 Chebyshev tau method (J. J. Dongarra,
B. Straughan, and D. W. Walker, 1996,Appl. Numer. Math.22, 399–435). This
allows us to obtain highly accurate eigenvalues and eigenfunctions in a very effi-
cient manner. The onset of convection is seen to have a bimodal nature in which
convection may be dominated by the porous medium or by the fluid, depending
on the depths of the relative layers and the strength of the tension in the fluid sur-
face. The effect of surface tension is investigated in detail and it is found that for
the parameter̂d (=depth of fluid layer/depth of porous layer) very small, the sur-
face tension has a strong effect on convection dominated by the porous medium,
whereas ford̂ larger the surface tension effect is observed only with the fluid
mode. c© 2001 Academic Press

Key Words:Chebyshev tau method; superposed porous–fluid convection; surface
tension; multilayer convection; Marangoni effect.

1. INTRODUCTION

In 1988, Chen and Chen [4] produced a classical paper in which they studied thermal
convection in a two-layer system composed of a porous layer saturated with fluid over which
was a layer of the same (clear) fluid. The layer was heated from below and Chen and Chen
[4] considered the bottom of the porous layer, as well as the upper surface of the fluid, to
be fixed. They showed that the linear instability curves for the onset of convective motion,
i.e., the Rayleigh number against wavenumber curves, may be bimodal in that the curves
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possess two local minima. A crucial parameter in their analysis is the number

d̂ = d

dm
= depth of fluid layer

depth of porous layer
. (1.1)

They interpreted their findings by showing that ford̂ small (≤0.13) the instability was
initiated in the porous medium, whereas ford̂ larger than this the mechanism changed and
instability was controlled by the fluid layer. The work of Chen and Chen [4] employed
the fundamental model for convection in a porous–fluid-layer system developed originally
by Nield [11]. Thus, in turn, it employed the experimentally suggested condition at the
interface between the porous and the fluid media proposed by Beavers and Joseph [1],

∂uβ

∂z
= α√

K

(
uβ − uβm

)
, β = 1, 2. (1.2)

In this equationuβ are thex andy components of the fluid velocityui , uβm are the equivalent
components of the fluid velocity in the porous mediumui

m, α is a constant depending on
the porous medium, andK is the permeability. This equation holds along the horizontal
interface between the porous medium and the fluid,z being in the vertical direction.

Since the problem of convection in a porous–fluid system is one with many industrial
and geophysical applications, it has received much attention in the literature (cf. the review
of Nield [15] and the book by Nield and Bejan [16]). Nield [11–14] studied in much detail
systems of two or more layers especially with regard to which porous-medium model is
most appropriate for convection. Blestet al.[2, 3] considered a very interesting application
to the manufacture of composite materials used in the aircraft and automobile industries.
McKay [10] considered a problem similar to that of Chen and Chen [4] but with chemical
reactions allowed in the layers. Many other references may be found in these papers.

The purposes of this article are twofold: one is to derive aD2 Chebyshev tau method (cf.
Dongarraet al.[6] and Straughan and Walker [19]) to yield eigenvalues and eigenfunctions
accurately for the two-layer problem, and the other is to investigate in detail the physically
important problem where the upper (fluid) surface is free and the surface tension, being
temperature dependent, may influence convective motion. The latter aspect is timely because
Nield [14] (see also the references therein) specifically addressed the question of modelling
convection in a porous medium when the upper surface is free. We pay particular attention
to the case of̂d small, approximately equal to 0.005, and thus obtain numerical information
on Nield’s model.

The implementation of aD2 Chebyshev tau method is, we believe, highly useful in
porous–fluid convection problems. Chen and Chen [4] employed a shooting method. The
D2 method given here has several advantages. Apart from numerical accuracy, we are able
to calculate as many eigenvalues as we need, which is useful when the eigenvalues of interest
are changing in parameter space. We can also calculate the eigenfunctions very easily.

In this work we also employ the Beavers–Joseph condition (1.2). Payne and Straughan
[17] have shown that the solution to thermal flow problems depends continuously on the
parameterα when Darcy’s law is adopted in the porous medium and Stokes’s flow holds
in the fluid layer. Indeed, the Beavers–Joseph condition has proved successful in other
slow-flow situations, such as flow past a porous sphere (see Qin and Kaloni [18]). However,
the analysis of [17] casts serious doubt on whether (1.2) would be realistic for larger fluid
velocities for which Navier–Stokes flow is valid. Since we restrict attention here to the
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onset of surface-tension-driven convection in the porous–fluid system, our analysis is one
of linearised instability and so we effectively consider Stokes’s flow. Hence, use of (1.2) is
justified.

We shall employ the notation of Chen and Chen [4] except for the surface tension part,
which is new. Hence, we consider a porous medium occupying the layerz ∈ (−dm, 0) with
the fluid in the layerz ∈ (0, d). Naturally, the interface is atz= 0. The equations in the
fluid are the Navier–Stokes equations

∂ui

∂t
+ u j

∂ui

∂xj
= − 1

ρ0

∂p

∂xi
+ ν1ui + ᾱgT ki ,

∂ui

∂xi
= 0, (1.3)

∂T

∂t
+ ui

∂T

∂xi
= k f

(ρ0cp) f
1T,

holding for timet > 0, in the spatial domain{(x, y) ∈ IR2, z ∈ (0, d)}. In these equations
ui , p, andT are velocity, pressure, and temperature andρ0, ν, ᾱ, g, k f , andcp are density,
kinematic viscosity, thermal expansion coefficient, gravity, thermal conductivity, and spe-
cific heat at constant pressure. Standard indicial notation is employed throughout, subscript
f or m denotes fluid or porous medium, respectively,k = (0, 0, 1), and1 is the Laplace
operator.

In the porous medium the equations are

1

φ

∂um
i

∂t
= − 1

ρ0

∂pm

∂xi
− ν

k
um

i + ᾱgTmki ,

∂um
i

∂xi
= 0, (1.4)

(ρ0cp)
∗ ∂Tm

∂t
+ (ρ0cp) f u

m
i

∂Tm

∂xi
= k∗1Tm,

with t > 0, andx ∈ {(x, y) ∈ IR2, z ∈ (−dm, 0)}. The quantitiesum
i , pm, andTm are respec-

tively velocity, pressure, and temperature in the porous medium,φ is the porosity, and

X∗ = φX f + (1− φ)Xm,

where in (1.4) X is replaced byk or ρ0cp.
The steady-state solution in whose stability we are interested is one for which there is

no fluid motion in either layer and the temperatures at the upper and lower boundaries are
held at fixed constant temperaturesTU andTL , respectively, withTL > TU .

The basic steady-state solution to Eqs. (1.3) and (1.4) is found as in Chen and Chen [4].
It is this solution which we examine for linearised instability. In fact, the basic solution
(ūi , T̄, p̄), (ūm

i , T̄
m, p̄m), is the same as in Chen and Chen [4], so

ūi = 0, ūm
i = 0,

T̄ = T0− (T0− TU )
z

d
, 0≤ z≤ d, (1.5)

T̄m = T0− (TL − T0)
z

dm
, −dm ≤ z≤ 0.
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Here T0 is the temperature at the interface, which is found by requiring continuity of
temperature and heat flux as (cf. [4])

T0 = k∗dTL + k f dmTU

k∗d + k f dm
. (1.6)

We note thatTL > T0 andT0 > TU . The steady pressures̄p and p̄m are found from (1.3)
and (1.4). Since these are not required explicitly in the ensuing instability analysis, we do
not give them.

There are two fundamental differences from the Chen and Chen [4] situation. One of
these is the surface-tension condition at the stress-free fluid surface, which is discussed in
the next section. The other concerns the temperature field at the fluid surfacez= d. At this
surface a radiation-type boundary condition of the form

δ1
dT̄

dz
+ δ2T̄ = c, at z= d, (1.7)

in the steady state is assumed. The coefficientsδ1 andδ2 depend on exactly what conditions
hold in the atmosphere. For example, in bright sunshineδ1 is large since heating is mainly
by radiation, whereas under cloudy or foggy conditionsδ2 will be dominant. The termc is
prescribed. It is convenient to rewriteδ1 andδ2 in terms of a constantL as

δ1 = 1

1+ L
, δ2 = L

1+ L
, (1.8)

and then ifT̄(d) = TU , from (1.7) we find

c(1+ L) = LTU +
(

TU − T0

d

)
,

which yields

TU = cd(1+ L)+ T0

1+ Ld
. (1.9)

Thus, for givenc we always knowTU , and this is consistent with the Chen and Chen [4]
steady solution, providedTU is interpreted as in (1.9). Again, the continuity of heat flux
condition

k f
dT̄

dz
= k∗

dT̄m

dz
at z= 0

yields the steady solution (1.5), (1.6) as in Chen and Chen [4].
In the next section we derive equations for a perturbation (ui , θ, π) to (ūi , T̄, p̄) and

(um
i , θm, πm) to (ūm

i , T̄m, p̄m). In terms of the perturbationθ , the boundary condition (1.7)
leads to a condition on the temperature field at the fluid surface of the form

∂θ

∂z
+ Lθ = 0, on z= d. (1.10)

The boundary conditions on the velocity in the steady state arewm = 0 at z= −dm,
wherewm = um

3 , u · n is continuous atz= 0, andn = (0, 0, 1). The stress-free condition
onui atz= d is considered together with the other boundary conditions in the next section.
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2. PERTURBATION EQUATIONS FOR THE LINEAR INSTABILITY PROBLEM

We now put ui = ūi + ui , T = T̄ + θ, p = p̄+π, um
i = ūm

i + um
i , Tm = T̄m+ θm,

and pm = p̄m + πm in (1.3) and (1.4) and derivelinearisedequations for the perturba-
tion quantities(ui , θ, π,um

i , θm, πm). Although these equations are formally the same as
those in [4], we do include a derivation. The reason is that in [4] the time derivative terms
are ignored in deriving the boundary conditions and apriori we cannot do this. For surface-
tension-driven convection in a pure fluid (cf. [5, 8]) under suitable conditions, one may find
that convective motion commences by oscillatory convection. Thus, we derive the boundary
conditions at the outset retaining time-derivative terms.

The linearised perturbation equations from (1.3) and (1.4) are, after introducion of a time
dependence, of the form

ui = ui (x)eσ t , θ = θ(x)eσ t , um
i = um

i (x)e
σmt, θm = θm(x)eσmt,

ρoσui = − ∂π
∂xi
+ µ1ui + ρ0ᾱgki θ,

∂ui

∂xi
= 0, (2.1)

σθ =
(

T0− TU

d

)
w + k f

(ρ0cp) f
1θ,

ρ0

φ
σmum

i = −
∂πm

∂xi
− µ

k
um

i + ρ0ᾱgki θm,

∂um
i

∂xi
= 0, (2.2)

σmθm =
(

TL − T0

dm

)
(ρ0cp) f

(ρ0cp)∗
wm + k∗

(ρ0cp)∗
1θm,

wherew = u3, wm = um
3 , andµ = νρ0 is the dynamic viscosity.

In fact, we employ the nondimensionalization of Chen and Chen [4] and after using the
normal modes to represent thex andy dependence, in terms of fluid and porous wave-
numbersa andam, we derive exactly the same equations from (2.1) and (2.2) as those of
[4, Eqs. (26), (27), (29), and (30)]. Thus, with

w = W(z) f (x, y), θ = 2(z) f (x, y), wm = Wm(z) f (x, y), θm = 2m(z) f (x, y),

f being the horizontal planform, the eigenvalue equations for the growth ratesσ andσm are

(D2− a2)2W − a2Ra2 = σ

Pr
(D2− a2)W,

(2.3)
(D2− a2)2−W = σ2,(

D2− a2
m

)
Wm + a2

mRam2m = −σm
δ2

φPrm

(
D2− a2

m

)
Wm,

(2.4)(
D2− a2

m

)
2m −Wm = σmGm2m.
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In (2.3), D = d/dz, with (2.3) holding inz ∈ (0, 1), whereas (2.4) hold inzm ∈ (−1, 0)
andD = d/dzm. The quantitiesRaandRam are the Rayleigh number and porous Rayleigh
number given by

Ra= gᾱρ0(TU − T0)d3(ρ0cp) f

µk f
, (2.5)

Ram = Ra
(δεT )

2

d̂4
. (2.6)

Note thatRaandRam arenegative. The quantitiesPr andPrm the Prandtl and porous Prandtl
numbers,δ is the Darcy number given byδ = √k/dm, and

Gm = (ρ0cp)
∗

(ρ0cp) f
, εT = λ f

λm
,

with the fluid and porous medium thermal diffusivities being defined byλ f = k f /(ρ0cp) f

andλm = k∗/(ρ0cp)
∗.

Equations (2.3) and (2.4) form a tenth-order system to be solved for the eigenvalueσ (or
σm, which is related) withRa, Ram, and the other parameters fixed. In fact,σ andσm are
related as

σm = d̂2

εT
σ.

Minimisation is performed inaoram. For this we need 10 boundary conditions. Onz= −1,
the bottom of the porous layer, we have

Wm = 2m = 0, z= −1. (2.7)

On the upper (fluid) surfacez= 1, we have

W = 0, D2+ L2 = 0, z= 1, (2.8)

and at the interface continuity of normal velocity, temperature, and the heat flux, yields

W = d̂Wm, d̂2 = ε2
T2m, D2 = εT Dp2m, z= 0, (2.9)

where we observe that the interface between the fluid and porous media isz= 0 and we
have accentuated the derivatived/dzm by employingDp for this.

Two further interface conditions and one further condition onz= 1 are needed.
To derive the condition onz= 1 we suppose the surface tension,σ , to have the form

σ = σ0[1− γ (T − T0)], (2.10)

whereσ0 andγ are constants. Ift i andti j denote the stress vector and stress tensor, then at
z= 1,

t i = ti j n j = σbααni + xi
;αaαβσ;β, (2.11)
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wherebαα is the mean curvature of the surface,xi
;α are tangential vectors,aαβ is the first

fundamental form of the surface, and ;α denotes covariant differentiation with respect to
the surface coordinates. Since in the fluid

ti j = −pδi j + 2µdi j , di j = 1

2
(ui, j + u j,i ),

condition (2.11) onz= 0 becomes

−pni + µ
(
∂ui

∂z
+ ∂w
∂xi

)
= σbααni + xi

;αaαβσ;β.

The horizontal components,i = 1, 2, of this yield for the perturbation quantities

µ
∂u

∂z
= −γ σ0

∂θ

∂x
, µ

∂v

∂z
= −γ σ0

∂θ

∂y
.

These are added and nondimensionalized, and the conditionui,i = 0 is employed to deduce

D2W = Ma1∗θ, on z= 1. (2.12)

Here,1∗ = ∂2/∂x2+ ∂2/∂y2 andMa is the Marangoni number,

Ma= γ σ0(TU − T0)d

λ fµ
. (2.13)

Note that since we are heating from below, in this workMa< 0.
To derive the interface boundary conditions we start with the Beavers–Joseph condition

∂uβ
∂z
= α√

k

(
uβ − um

β

)
, β = 1, 2, on z= 0.

The equation forβ = 1 is differentiated with respect tox, that forβ = 2 is differentiated
with respect toy, and the results are added. Using the fact thatui,i = 0, one derives the
nondimensional form

D2W − αd̂

δ
DW + αd̂3

δ
DpWm = 0. (2.14)

Continuity of normal stress at the interface requires

ni t
i
m = ni t

i
f ,

wheret i
m andt i

f are the stress vectors in the porous and fluid media. Here,

ni t
i
f = −πmδi 3ni

and

ni t
i
f = −(π f δi 3− 2µdi 3)ni .

Thus, we find

πm = π − 2µ
∂w

∂z
, on z= 0. (2.15)
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We take∂/∂xα of this,α = 1, 2, to find

∂πm

∂xα
= ∂π

∂xα
− 2µ

∂2w

∂xα∂z
, on z= 0. (2.16)

Then, we substitute from the differential equations(2.1)1 and(2.2)1 for π,α andπm
,α. Using

uα,α = −w,z we derive, in nondimensional form, the final interface condition

d̂4

φPrm
σmDpWm + d̂4

δ2
DpWm = 1

Pr
σDW − D3W − 31∗DW, on z= 0. (2.17)

It is important to note thatσ andσm do appear in the boundary condition (2.17). Chen and
Chen [4] searched directly for instabilities whenσ, σm ∈ IR and therefore they discarded
theσ terms in (2.17).

Thus, the complete eigenvalue system to be solved comprises (2.3), (2.4), (2.7), (2.8),
(2.9), (2.12), (2.14), and (2.17). The numerical method for this is described in the next
section.

3. NUMERICAL METHOD

We now briefly describe the numerical method employed to solve the eigenvalue problem
of Section 2. We implement aD2 variant of the Chebyshev tau method (cf. Dongarra
et al. [6]). The implementation of this is important since it is a highly accurate method
which yields eigenvalues and eigenfunctions easily, and we believe its use in multilayer
porous-fluid problems has much potential.

We first transform (2.3) to the Chebyshev domain (−1, 1) by puttinĝz= 2z− 1 and then
transform (2.4) to the same domain with the transformationẑm = −2zm − 1. This means
that the fluid surfacez= 1 becomeŝz= 1 and the porous surfacezm = −1 becomeŝzm = 1
while the interfacez= 0= zm becomeŝz= −1= ẑm. Equations (2.3) are written as three
systems of second-order equations, namely

(D2− a2)W − A = 0,

(D2− a2)A− a2Ra2 = σ

Pr
A, (3.1)

(D2− a2)2−W = σ2,

while (2.4) are already in second-order form. Onz= 1 we have the boundary conditions
(2.8) and (2.12), whereas onzm = −1, (2.7) hold. On the interfacez= 0, the five boundary
conditions are (2.9), (2.14), and (2.17). Of course, Eqs. (3.1) and (2.4) and the boundary
conditions must also be transformed to their appropriate domains.

The five variablesW, A,2,Wm, and2m are then regarded as independent and are
expanded as Chebyshev series

W =
N+2∑
n=0

WnTn(z), A =
N+2∑
n=0

AnTn(z), 2 =
N+2∑
n=0

2nTn(z),

(3.2)

Wm =
N+2∑
n=0

Wm
n Tn(z), 2m =

N+2∑
n=0

2m
n Tn(z).
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The operatorD2 is written in matrix form (cf. [6]) and them(N + 1) andm(N + 2) rows
of the resulting matrix,m= 1, . . . ,5, are replaced with the boundary conditions, recalling
Tn(±1) = (±1)n andT ′n(±1) = (±1)n−1n2. This gives rise to a generalised 5(N + 3)×
5(N + 3) matrix eigenvalue problem of the form

Ax = σ Bx. (3.3)

This generalised matrix eigenvalue problem is solved with the aid of the QZ algorithm.
In many hydrodynamic stability eigenvalue studies there has been a serious problem

with so-called spurious eigenvalues (cf. Dongarraet al. [6], Gardneret al. [7], McFadden
et al. [9], Straughan and Walker [19], and Zebib [22]. These are not true eigenvalues of the
system but are artefacts of the approximation process. One of the major reasons given for
the appearance of spurious eigenvalues is the occurrence of zero rows inB because of the
boundary conditions (cf. [6, 7, 9, 19, 22]). We should point out that with the system (3.3)
which arises in this study, wecan remove offending boundary condition terms from the
B matrix, albeit at technical expense. However, since in our numerical calculations we do
not witness the production of spurious eigenvalues, we have not done so and have simply
employed the boundary conditions as them(N + 1)th andm(N + 2)th rows ofAand (where
appropriate)B. We do not have a rigorous explanation for the nonappearance of spurious
eigenvalues, but we believe that they are not witnessed because of the mathematical nature
of the problem under investigation. While the eigenvalues require care for their accurate
computation, the eigenfunctions are not nearly linearly dependent as they are in parallel
flow problems as studied in e.g., [6, 7, 22]. It would appear that the nonnormality of the
operators associated with parallel flow problems has a significant bearing on the presence
of spurious eigenvalues.

4. NUMERICAL RESULTS

One interesting fact we observed in our computations was that the critical eigenvalue
σ was real, even with surface tension present, although we are restricting attention to the
case of heating from below. This is important from the viewpoint of the results of Chen and
Chen [4] in that it justifies their procedure of takingσ real from the outset.

In our numerical results we have takenPr = 6, a figure consistent with water being the
working fluid. We chooseδ = 0.002, εT = 0.7,Gm = 10, φ = 0.3, andα = 0.1, which
are figures consistent with many porous materials as described by Chen and Chen [4] and
Beavers and Joseph [1]. The radiation value ofL = 10 is selected; again this is typical of
real situations (cf. [5, 8]). This paper concentrates on varying the depth ratiod̂ and the
surface-tension effect through the Marangoni numberMa.

Figures 1a and 1b show, for fixedMa= −100, the effect ofd̂ variation. Whend̂ =
0.05 and 0.07, the critical value ofRam is for am = 2.0 and 2.0, respectively, as shown
in Table I. This means that convection is dominated by the porous medium as might be
expected since the fluid layer is relatively thin. Whend̂ = 0.09, 0.11, and 0.13 (the graphs
are shown in greater detail in Fig. 1b), the criticalRam values are, respectively, foram =
23.5, 19.5, 17.0, and therefore the convective motion is initiated by the fluid layer. Thus,
there is a criticald̂ somewhere between 0.07 and 0.09 for which the instability switches
from being dominated by the porous layer with small wavenumber (wider convection cells)
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FIG. 1. Critical porous Rayleigh number against porous wavenumber. (a)Pr = 6,Gm = 10, εT = 0.7,
φ = 0.3,Ma= −100, α = 0.1, δ = 0.002, L = 10, d̂ values on graphs; (b)Pr = 6,Gm = 10, εT = 0.7, φ =
0.3,Ma= −100, α = 0.1, δ = 0.002, L = 10, d̂ values on graphs.
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TABLE I

Maximum Values of Ram with the Corresponding Values ofam

d̂ Ram am Ram am

0.05 −22.55 2.0 −144.81 40
0.07 −20.77 2.0 −41.49 30
0.09 −19.17 2.0 −16.12 23.5
0.11 −17.53 2.0 −7.54 19.5
0.13 No Minimum −4.00 17.0

Note. Pr= 6, Gm = 10, εT = 0.7, φ = 0.3, Ma= −100, α = 0.1, δ =
0.002, L = 10.

to being dominated by the fluid layer with much larger wavenumbers (thin convection cells).
This bimodal neutral curve behaviour was known before (cf. [4]), but we confirm it even
when surface tension is acting on the upper surface. The Rayleigh and wavenumbers are
essentially discontinuous in̂d.

Figures 2–5 display the effect of changing surface tension while keepingd̂ fixed. When
d̂ = 0.03 and 0.05 we see that convection is always dominated by the porous medium, at
least forMa≥ −400. Precise values for the maximum of these curves are given in Tables II
and III.

Figure 4, ford̂ = 0.07, is interesting: we observe that the porous layer dominates the
convection forMa= 0,−100,−200, and −300. However, whenMa= −400 instability
commences through the fluid layer. This can be understood more easily from Table IV.
Thus, the effect of increasing surface tension eventually allows the fluid layer to dominate
convective motion.

FIG. 2. Critical porous Rayleigh number against porous wavenumber.Pr = 6,Gm = 10, εT = 0.7, φ = 0.3,
d̂ = 0.03, α = 0.1, δ = 0.002, L = 10,Ma values on graphs.
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FIG. 3. Critical porous Rayleigh number against porous wavenumber.Pr = 6,Gm = 10, εT = 0.7, φ = 0.3,
d̂ = 0.05, α = 0.1, δ = 0.002, L = 10,Ma values on graphs.

FIG. 4. Critical porous Rayleigh number against porous wavenumber.Pr = 6,Gm = 10, εT = 0.7, φ = 0.3,
d̂ = 0.07, α = 0.1, δ = 0.002, L = 10,Ma values on graphs.
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TABLE II

Maximum Values of Ram with the Corresponding Values ofam

Ma Ram am Ram am

0 −24.66 2.4 −1020.87 51.4
−100 −24.52 2.4 −890.47 58.2
−200 −24.39 2.4 −742.70 62.0
−300 −24.25 2.4 −578.26 65.2
−400 −24.11 2.4 −395.44 68.6

Note. Pr= 6, Gm= 10, εT = 0.7, φ= 0.3, d̂= 0.03, α= 0.1, δ= 0.002,
L = 10.

TABLE III

Maximum Values of Ram with the Corresponding Values ofam

Ma Ram am Ram am

0 −22.396 2.2 −167.28 39.4
−100 −22.342 2.2 −144.807 40.0
−200 −22.287 2.2 −120.841 40.8
−300 −22.233 2.2 −95.163 41.8
−400 −22.178 2.2 −67.477 43.2

Note. Pr= 6, Gm = 10,εT = 0.7,φ = 0.3, d̂ = 0.05,α = 0.1, δ = 0.002,
L = 10.

FIG. 5. Critical porous Rayleigh number against porous wavenumber.Pr = 6, Gm = 10,εT = 0.7,φ = 0.3,
d̂ = 0.09,α = 0.1, δ = 0.002,L = 10,Ma values on graphs.
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TABLE IV

Maximum Values of Ram with the Corresponding Values ofam

Ma Ram am Ram am

0 −20.690 2.2 −47.814 29.4
−100 −20.656 2.2 −41.491 29.8
−200 −20.622 2.2 −34.780 30.2
−300 −20.588 2.2 −27.628 30.8
−400 −20.553 2.2 −19.962 31.6

Note. Pr= 6, Gm = 10, εT = 0.7, φ = 0.3, d̂ = 0.07, α = 0.1, δ =
0.002,L = 10.

When d̂ = 0.09, then all five cases,Ma= 0, . . . ,−400, are such that the fluid layer
dominates the convection. Numerical values for the maximum of the curves are given in
Table V.

Figures 6a and 6b display the velocity,W,Wm, eigenfunction and demonstrate how the
situation for Fig. 4 withd̂ = 0.07 changes whenMa switches from−300 to−400. In
Fig. 6a, we see that forMa= −400 the motion is almost entirely in the fluid layer whereas
for Ma= −300 the porous layer has a strong effect. In Fig. 7a, the temperature variation
in the fluid layer is dominant whenMa= −400 whereas forMa= −300 (see Fig. 7b) the
temperature variation in the porous layer is important.

The effect ofd̂ being very small is considered in Table VI. ForMa≥ −400, the convection
is dominated by the porous medium. However, we are able to ascertain the surface-tension
effect quite strongly. When̂d = 0.01 we see a 10.45% variation inRam asMa varies from
0 to−400, whend̂ = 0.005 this variation is 17.11%, and when̂d = 0.004 the variation
is 18.55%. Clearly, as the fluid layer becomes very thin, the effect of surface tension will
play an important role, as we expect physically. Certainly, for a porous layer of depth
2 cm (typical in laboratory experiments) whend̂ = 0.005, this means the porous medium
is covered by a fluid layer of depth 0.1 mm. This is effectively a thin film, and we do expect
surface tension to have an effect.

Throughout our calculations we have been able to obtain highly accurate results with
very few polynomials. Mostly we employed 30 polynomials and so the matrix sizes in (3.3)
are 150× 150. With modern computers this allows us to obtain neutral curves such as those
in Figs. 1–5 in a reasonable time. Ford̂ = 0.005 and 0.004 we required 50 polynomials for
reasonable accuracy and we found it difficult to proceed ford̂ smaller than this.

TABLE V

Maximum Values of Ram with the Corresponding Values ofam

Ma Ram am Ram am

0 −19.13 2.2 −18.53 23.4
−100 −19.10 2.2 −16.11 23.6
−200 −19.07 2.2 −13.56 24.0
−300 −19.04 2.2 −10.84 24.4
−400 −19.01 2.2 −7.93 25.0

Note. Pr= 6,Gm = 10,εT = 0.7,φ = 0.3,d̂ = 0.09,α = 0.1,δ = 0.002,
L = 10.
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FIG. 6. Dimensional eigenfunctionsWandWm. (a)Pr = 6,Gm = 10,εT = 0.7,φ = 0.3, d̂ = 0.07,α = 0.1,
δ = 0.002,L = 10,Ma= −400; (b)Pr = 6,Gm = 10,εT = 0.7,φ = 0.3,d̂ = 0.09,α = 0.1,δ = 0.002,L = 10,
Ma= −300.
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FIG. 7. Dimensional eigenfunctions2 and2m. (a)Pr = 6, Gm = 10,εT = 0.7,φ = 0.3, d̂ = 0.07,α = 0.1,
δ = 0.002,L = 10,Ma= −400; (b)Pr = 6,Gm = 10,εT = 0.7,φ = 0.3,d̂ = 0.09,α = 0.1,δ = 0.002,L = 10,
Ma= −300.
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TABLE VI

Maximum Values of Ram with the Corresponding

Values ofam, for the Porous Dominated Case

Ma Ram am d̂

0 −30.63 2.7 .01
−100 −29.88 2.7 .01
−200 −29.10 2.7 .01
−300 −28.28 2.7 .01
−400 −27.43 2.7 .01

0 −35.35 3.0 .005
−100 −34.08 3.0 .005
−200 −32.66 3.0 .005
−300 −31.08 3.0 .005
−400 −29.30 3.0 .005

0 −36.49 3.0 .004
−100 −35.12 3.0 .004
−200 −33.56 3.0 .004
−300 −31.79 3.1 .004
−400 −29.72 3.1 .004

Note. Pr= 6,Gm = 10,εT = 0.7,φ = 0.3,α = 0.1,δ = 0.002,
L = 10.

5. CONCLUSIONS

In this paper we have implemented aD2 variant of the Chebyshev tau numerical method
and have derived accurate results for the onset of convection in a two-layer system com-
prising a porous layer over which lies a layer of fluid. The Chebyshev tau method is very
important for this general class of problem since it is highly accurate, the eigenfunctions
are easy to generate, and it is easily generalised to the multilayer situation where there
are many porous–fluid layers superposed. The Chebyshev method used here also yields
as many eigenvalues in the spectrum as one desires. This is particularly important in that
for convection problems of current interest, it is often the case that the eigenvalues change
positions, one eigenvalue which is dominant in a certain region of parameter space being
replaced by another in another parameter region. Such effects have already been witnessed
in a single layer of fluid or in a single layer of saturated porous material (see Straughan and
Walker [20], and Tracey [21] respectively). The extension to the multiporous–fluid layer
case has potential for industrial application in making composite materials (see, e.g., the
models in Blestet al. [2, 3]).

We have investigated in detail the effect of surface tension on the onset of instability.
We have also extended the boundary conditions of Chen and Chen [4] to allow for the
possibility of oscillatory instabilities. However, we have vindicated their choice of setting
σ = 0 since we have shown numerically that instability does occur via stationary convection,
at least for the heated-below situation considered here. In particular, we show that surface
tension is increasingly important when the depth of the fluid layer is relatively large or also
when the depth of the fluid layer is relatively very thin. In the latter situation our results
provide quantitative evidence that Nield’s [14] model does represent a realistic situation for
convection in a porous medium with a free surface overlain by a thin film of fluid.
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